The Ultimate Guide to Operating and Maintaining Injection Moulding Tools 

The Ultimate Guide to Operating and Maintaining Injection Moulding Tools 


Injection moulding tools are essential components in the plastic manufacturing industry. The quality and suitability of these tools greatly impact the efficiency and cost-effectiveness of the injection moulding process. Proper operation and maintenance of injection moulding tools are crucial for ensuring optimal performance, extending the tool’s lifespan, and producing high-quality plastic parts. In this comprehensive guide, we will delve into the key aspects of operating and maintaining injection moulding tools, providing valuable tips and insights to help you enhance your production capabilities. 

[su_image_carousel source=”media: 1179,1070,1071,1031,587,470″ slides_style=”photo” crop=”16:10″ columns=”4″ align=”center” link=”lightbox” speed=”fast” image_size=”medium”]

Selecting the Right Equipment and Determining Process Conditions 

To ensure the successful operation of injection moulding tools, it is vital to select the right moulding equipment and define the appropriate process conditions. Choosing the correct injection moulding machine that matches your production requirements is essential for achieving optimal results. Factors such as the maximum injection volume, tie rod distance, mould installation dimensions, and clamping force should be considered during the equipment selection process. Determining reasonable process conditions, including injection pressure, clamping force, injection speed, and mould temperature, is equally important to prevent any adverse effects on the tool’s performance. 

Preparing the Injection Moulding Machine 

Before commencing production, it is crucial to ensure that the injection moulding machine is properly prepared. A thorough inspection of the machine’s components, such as the clamping system, clamping force, and ejection system, should be conducted to verify their smooth operation. Any anomalies or damages should be promptly addressed to avoid potential issues during production. Additionally, verifying the functionality of the shot counter is essential to track the machine’s performance and determine when major maintenance activities are required. 

Cleaning and Lubricating Injection Moulds 

Regular cleaning and lubrication of injection moulds are essential maintenance practices that contribute to their longevity and performance. Cleaning the moulds after each production cycle prevents the accumulation of debris and contaminants, ensuring smooth and efficient operation. The cleaning process can be performed while the mould is in the machine or on the bench, depending on the level of maintenance required. Using a mild solvent or degreaser and a lint-free cloth, the mould surfaces should be thoroughly cleaned to remove any residue or foreign materials. 

Lubrication is another critical aspect of injection mould maintenance. Proper lubrication of moving parts, such as ejector pins, slides, and cores, minimises friction and prevents seizure. It is recommended to apply lubricants regularly, especially in high-temperature environments, to ensure smooth operation and avoid costly damages. However, over-lubrication should be avoided, as it can attract dirt and debris, potentially leading to contamination or damage to the mould surfaces, or poor moulding quality. 

Regular Inspection of Mould Runners, Sprues, and Other Components 

Regular inspection of mould runners, sprues, gates, and vents is essential to maintain efficient production. These components are prone to wear and material buildup, which can affect the flow of plastic and cause poor surface finish and or sticking issues. Checking for any signs of wear, surface blemishes, or plastic buildup is crucial for identifying potential problems and taking appropriate measures. Scratches from previous attempts to remove stuck plastic should be addressed to prevent future sticking issues. Cleaning and polishing these components as necessary ensure smooth and unobstructed plastic flow during the injection moulding process. 

Ensuring Proper Mould Operation and Part Quality 

To achieve consistent part quality and maximise the efficiency of injection moulding tools, it is essential to establish and maintain proper mould operation procedures. Setting the required standards for part quality and ensuring personnel are trained to meet these standards are crucial steps. Having comprehensive guides or checklists for mould operation, including loading and unloading procedures, maintenance protocols, and production targets, minimises human errors and enhances overall performance. Tracking raw material consumption and scrap rates can also provide valuable insights into operational inefficiencies that need to be addressed. 

Routine Preventive Maintenance 

Routine preventive maintenance is vital for preserving the performance and longevity of injection moulding tools. Daily, weekly, monthly, or annual maintenance tasks should be performed to ensure the smooth running of the tools. These tasks include mould inspection, cleaning, lubrication of moving parts, and other routine maintenance activities. Regular cleaning of ejector units and any moving cores and intensive inspection of the mould’s critical components are essential to prevent unexpected failures or damages. Implementing a preventive maintenance schedule reduces the risk of costly downtime and prolongs the lifespan of injection moulding tools. 

Diagnostics Maintenance 

While preventive maintenance is crucial, diagnostics maintenance plays a crucial role in identifying and addressing potential issues in injection moulding tools. Diagnostics maintenance is typically performed when a fault or problem arises. It involves thorough checks and assessments to diagnose the cause of the issue and determine the appropriate solutions. Diagnostics maintenance should be conducted by qualified engineers or technicians to ensure accurate identification of problems and effective resolutions. It is important to address any faults promptly to minimise production disruptions and prevent further damage to the moulds. 

Maintaining Proper Design and Resin Selection 

Proper design and resin selection are fundamental to the successful operation and maintenance of injection moulding tools. A well-designed product reduces the risk of difficult ejection and poor mould filling, ensuring optimal part quality. It is important to consider factors such as draft angles, ejector pin placement, and gate selection during the design phase to avoid potential issues. Additionally, faults from other components of the injection moulding machine can impact the performance of the moulds. Therefore, ensuring the proper operation and maintenance of all machine components is crucial for preserving the integrity of injection moulding tools. 

Storing and Handling Injection Moulds 

Proper storage and handling of injection moulds are essential to prevent damage and maintain their performance. When the machine needs to be temporarily stopped, the mould should be closed to protect the cavity and core from exposure, which could lead to accidental damage. If the downtime exceeds 24 hours, applying anti-rust oil or release agents to the mould surfaces is recommended, especially in moist areas or during rainy seasons. Moisture in the air can negatively affect the surface quality of the cavity and the final moulded products. Before putting the mould back into operation, thorough cleaning and removal of any residual oil or contaminants is necessary. For moulds with mirror surface requirements, careful drying using compressed air or hot air is essential to prevent product defects. 

The Importance of Documentation and Maintenance Schedules 

Documenting maintenance activities and creating maintenance schedules are essential for effective mould management. Maintenance records provide valuable insights into the history of mould maintenance, repairs, and cleaning, facilitating better planning and decision-making. Developing maintenance schedules based on production volumes, resin types, and environmental factors ensures consistent and timely maintenance of injection moulding tools. These schedules should include detailed instructions for each maintenance task, allowing operators to perform the tasks correctly and efficiently. 

The Benefits of Proper Injection Moulding Tool Maintenance 

Proper operation and maintenance of injection moulding tools offer several benefits, including: 

  1. Enhanced part quality: Regular maintenance ensures consistent part dimensions, surface finish, and structural integrity, resulting in high-quality products. 
  1. Increased production efficiency: Well-maintained moulds minimise downtime, increase production speed, and reduce production costs by avoiding frequent repairs and replacements. 
  1. Worker safety: Regular maintenance reduces the risk of accidents and ensures a safe working environment for operators. 
  1. Extended tool lifespan: Proper maintenance practices extend the lifespan of injection moulding tools, reducing the need for frequent replacements and lowering overall costs. 
  1. Improved overall productivity: By optimising the performance of injection moulding tools, maintenance activities contribute to improved productivity and profitability. 


Operating and maintaining injection moulding tools is a critical aspect of the plastic manufacturing process. By adhering to proper operational procedures, implementing routine maintenance activities, and ensuring the correct resin selection and design, manufacturers can maximise the efficiency and lifespan of their injection moulding tools. Regular cleaning, lubrication, and inspection of mould components, along with preventive and diagnostics maintenance, are essential to prevent disruptions, optimise part quality, and reduce overall costs. With proper maintenance practices in place, injection moulding tools can consistently deliver high-quality products, enhance production efficiency, and drive business success in the plastic manufacturing industry.


Related Posts